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ABSTRACTAlI

Theoretical analyses of small-scale bridging of crack surfaces by O
T

IC

elastic-ideally plastic springs are presented and applied to the study of the INPS°

fracture toughness of ceramics reinforced by small particles. The dependence
of toughening on particle size, concentration, strength, and ductility is
explored, and relations between toughening and bridge length at fracture are
given. Available experimental information is examined in the light of the
analyses. "k/n,- ,: y.X 12- (cI 4  NZL -VJ e- 6

INTRODUCTION

The fracture toughness of a composite consisting of a ceramic matrix

containing ductile metal particles is studied theoretically in this paper on the
basis of the hypothesis (e.g. Krstic 1983) that the metallic inclusions toughen
the cc-amic by the mechanism of crack-bridging (Fig. 1). It is presumed
tha the faces of an advancing crack in the ceramic are pinned together by
intact particles for some distance behind the crack tip, reducing the crack-tip

stress intensity that would otherwise occur. The length of the bridged zone

and the amount of toughening that occurs depend on the breaking strength
of the particles, as well as on the deformations they may undergo before
they fail. Clearly, for crack-bridging to be effective a matrix crack should

* On Sabbatical Leave from the Department of Mathematics, University of Nigeria, Nsukka,
Nigeria.
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tend to be attracted to the particles, and it would appear that a necessary
condition for this to occur is that the elastic stiffness of the particles be less
than that of the matrix.

In a preliminary outline of some of the present results (Budiansky
1986) a bridging-spring model (Fig. 2) for the partially pinned crack was de-
scribed. The same model has recently received extensive mathematical
study from Rose (1986), who cites a variety of fracture problems to which
the model has relevance. In this paper we limit our attention to the case of
small-scale bridging, in which bridge length is small relative to crack length,
specimen dimensions, and distances from the crack to the specimen bound-
aries. We discuss the associated bridging-spring equations and their solu-
tions, and then consider the implications of these solutions with respect to
the problem of particulate reinforcement.

BRIDGING-SPRING MODEL

Elastic sprig

In the absence of springs connecting the faces of the plane-strain,
Mode-I crack shown in Fig. 2, the stresses near the crack tip would have the

standard distribution
aotp - KfG13(O)/(2xr)1 /2  (la)

where K is the stress intensity factor. In accordance with the assumption of
small-scale bridging, we will study the effects of the springs by letting the
crack be infinitely long, and assume that the distribution (la) is approached
asymptotically for r - -. The crack-tip stress distribution will then become

-otp - Kmfax(O) /(2 x r)l /
2  (1 b)

for r - 0. We intend to calculate the new stress-intensity factor Km and the

spring forces in terms of the "applied" stress-intensity factor K, the bridge-
length L, and the spring characteristics. For the case of linear springs we
adopt the notation of Rose (1986) here, and write the spring stress as

a - kEv/(l-v 2) (2)
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in terms of the crack-face displacement v, Young's modulus E, Poisson's ratio
v, and a spring-stiffness coefficient k. A relation connecting Km , K, and the
stress a(L) at the end of the bridged zone follows immediately from the use

of the Rice (1968) J-integral

J = r(Wnl - a IUainp)ds =0 (3)

taken around the path shown in Fig. 3. (Here W is the strain-energy density
and u, is the displacement vector; the horizontal parts of r lie just outside
the line of springs.) The result

(l-v 2)K2  (l-v 2)K + (1-v2 )a (L) (4)

E E kE

(Rose 1986, Budiansky 1986) provides an equation for the toughening ratio
X=K/K m , in the following sense. Suppose Km represents the critical stress-

intensity factor for crack growth in the matrix, and imagine that new springs
connecting the crack faces emanate from the crack tip whenever the crack
propagates. Then, if we set the peak spring stress a(L) equal to the spring
breaking-strength 0y, crack propagation with simultaneous fracture of the

last spring will occur for

112

X = I+ ; F(5)

The I-integral relation (4) has an energetic interpretation. During the
propagation process just described, energy is released into the crack tip at a
rate (per unit crack advance) given by the first term on the right, and the
second term is the energy loss rate caused by fracture of the last spring. The
left side, therefore, represents the energy input rate provided by the applied
field.

We would also like to find the relation between X and the bridge

length L, and for this purpose we will have to determine the spring stress
distribution a(x). A convenient starting point is to write the integral equa-

tion
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(1-v2)a(x) 4(1-v 2)Kx " 4(1-v r .o _ _ (6)_= - j(x)og ,. .x dx' (6)

for a(x) in (0,L). The left side is the crack-face displacement given by (2) in
terms of the spring stress; the terms on the right are the displacement due
to the applied K-field (la), and the reduction of this displacement due to the
action of the spring forces on the crack faces (Tada et al., 1985). The substi-
tutions

4kx 4kx' g=Ka..--

give ( frs+4 t t-' s (8) o
g(s) + g(t) log I __=(

where
= 4kL (9)

It follows from (4) that the ratio X - K/Km is given by

X = [1-2g 2()] - 1/2  (10)

The numerical solution of the integral equation (8) for g(s) is described in
detail in Appendix A. The results for X given by Eq.(10) are shown in Table I
for values of ct in the range (0,30), and a plot of X versus a is given by the
top solid curve in Fig. 4.

A check on the numerical accuracy of the results was provided by
another formula connecting X and g(s) that follows from the relation (Tada et

al., 1985) L.

KmKv O -x (11) 2-)

which gives

'-
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S](12)

A direct proof that the J-integral formula (10) is consistent with (12) and the
integral equation (8) is given in Appendix B. The results for X given by the-

formulas (10) and (12) were in excellent agreement with each other, and also
with those found by Rose (1986) by a different procedure.

Since g(s) - 4s for small a, it follows that X - (1 +a) for a .0. Also, for
a--, m, Rose has demonstrated the asymptotic relation

)L -mK4f (13)

The results for the non-dimensional spring stress g * g(s;a) are
plotted in Fig. 5 against the non-dimensional distance (e-s) from the "last"

spring, for a = 2, 5, and 20. Also shown for comparison are the results for g
given by a Wiener-Hopf solution for the limiting case a-** (Budiansky 1986,
Rose 1986), summarized briefly in Appendix C. Note that g(s) peaks sharply
at s-a, consistent with the behavior

g'(s) - -J log(e-5) (14)
2

for s -+ a that follows from Eq.(8).

The model will now be extended to the case of elastic-plastic springs,

in order to provide a basis for the study of particulate toughening when

plastic yielding of the particles is important.
Elantic-plastic springs

We assume now that for increasing v, the springs obey the elastic-

ideally plastic constitutive relation

2Oy(l-v )

a = kEv/(l-v ) for v~ Vy u
IcE

M Oy for v Z vy (15)

I
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Then if v(L) at the end of the bridged zone exceeds Vy, the J-integral result

(4) generalizes to

E - + - + 2oy[v(L) -vy] (16)E E kE

If failure of the last spring is now presumed to occur when [v(L) - vy]
attains a critical plastic value vp, then the toughening ratio becomes

1+±_ +LVP 112(17)

If plastic yielding (v > vy, a = cy) occurs for Ly < x < L, the spring stress
distribution in (0,Ly) is governed by

(1-v2)a(x) 4(l-v 2)K4"x 4(l- ( "x1+ V'" dx
k____ - _______" 4( 2  * (x' )logi Ix-4i x dx'
kE Vrx E JOF x~ Ii-xi

4(1-v2 ) O .o + "(18

In non-dimensional form (see (7)) this is

U,,, , + , ,r t ro, F t = ,s(0 5 : L ) (19 )g(s) +f g(t) log('~ 7 . td, t + gyf log rT, 'd='r(OSy (9

where
w y - 4kLylx, gy - g(ay) (20)

The solution of (19) for prescribed values of a and ay is described in Ap-
pendix A. The associated values of vp/vy follow from the fact that
v(L) - vp + vy is given by the right-hand side of (18) evaluated at x=L. Hence
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+ ,r g(s)o 4 4y logN3 Jt (21)gy J- J y +

and the corresponding value of X follows from (17) as

)=L l-2g l+2!)P (22)Vyj

A check is provided by the formula

[ g(s) ds -2gy1q",- - ) (23)

7L1 - J - -
that follows from (11).

The previously discussed results for elastic springs correspond to
ay-a and vp/vy-O. By varying ay at given values of a, solutions were found,
by interpolation, for a number of prescribed values of vp/vy. The results for
X versus a are shown in Fig. 4.
Rigid-plastic springs

In the limit of very large vp, the elastic contribution to spring energy
may be ignored, so that the J-integral result (16) becomes

(l-v 2)K2  (1-v2 )K2( - K + 2OyVp (24)
E E

and the toughening ratio is

2EyYVP ]1/ 
2

+ K1-v) (25)

The result for X in terms of bridge length follows from (11) with a(x)=oy;thus
X=--1 +2 2,,2- y " (26)

K.

p.
p.
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PARTICULATE TOUGHENING

Particle-pinned-crack model

For simplicity, we will assume spherical particles, and suppose that
the faces of an advancing plane crack are pinned by the particles at their
equators (Fig. 1). Consistency with this assumption would require that the
matrix area on the bridged zone be reduced by a fraction that exceeds the
volume concentration c of particles. However, again for simplicity, we will
suppose that the matrix-area concentration of each crack face retains the
value (1- c) that corresponds to an arbitrary plane cross-section of the com-
posite material. To invoke the bridging-spring model of Fig. 2, we will iden-
tify the spring stress a(x) with smeared-out particle stresses cap(x), where
up(X) is the average particle stress at x - that is, the average over all parti-
cles in the thickness direction, normal to the plane of Fig. 1. Next, we have to
get an estimate for the effective spring constant k.
Effective spring constant

Consider first two elastic half-spaces, bridged by a single isolated
elastic particle, that are pulled apart by remote tensile forces that produce
an average tensile stress cp in its equatorial cross-section. If we neglect the

difference between the particle and matrix moduli, the remote displacement
of each face (Fig. 6a) is given by the classical smooth-punch result

2ira(1 -vm)ap
v l 0 =(27)

2Em
where Em and vm are the Young's modulus and Poisson's ratio of the matrix,

and a is the particle radius. This is the average crack-face displacement for
the limit c -+ 0. For arbitrary c we will write

xa(l -v2)F
ve = 0(c) - (28)

2Em

and estimate 0 on the basis of the circumferentially cracked cylinder shown

in Fig. 6b, with outer radius b chosen to satisfy (a/b) 2 
= c in order to meet

the assumed crack-face area ratio. (Here vave is defined as the displacement
averaged over the full area xb2 of the cylinder.) For this configuration, Tada
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et al. (1985) supply the following approximate relations for the crack stress-
intensity factor:

KI = -a/u) H(alb) (29a)
2 (a/b)2

H(a/b) = 1 + -(a/b) + -(a/b)2 -. 363(a/b) 3 +.73 1(a/b) 4  (29b)
2 8

where the applied stress is a = (a/b) 2 op. The energy released by cutting the
crack into the cylinder in the presence of constant a is given by the integral

b KI1-v2 )
2x a'da' (30)

a Em

and this may be equated to xb 2ovave . The resulting expression for Vave may
then be compared with Eq. (28) to yield the formula

= f J dp (31)

Finally, substituting Vave into the defining relation (2) for k, we get

k = YEm. 1 -v 2 (32)

Here E and v are the effective elastic constants of the composite material

consisting of the ceramic matrix containing a randomly distributed
concentration c of particles.

The function 1(c) defined by Eq. (31) is shown by the solid curve in

Fig. 7. The dashed curve shows the approximation provided by the empirical
formula

13- (l -c)(l -r') (33)

Since this estimate for 13 is explicit and simple, we will use it henceforth.
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Toughening ratio
We can now rewrite the J-integral results (4) and (5) to make them

applicable to a ceramic reinforced by elastic particles. The left-hand side of
(4), which comes from the far field, stays the same, but now E and v refer to

the effective properties of the composite. The first term on the right came
from the energy-release rate at the crack edge, and so we should change E
and v to Em and vm because the crack edge is advancing only into matrix
material. We also multiply this term by (1-c) to take into account the fact
that the bridging particles reduce the length of the advancing crack front by
the factor c. This gives

K (1-v 2) IK(1-v2m)(1--c) (1-v2 )a(L) (34)
E Em kE

Finally, we use Eqs. (32) and (33) to substitute for k in the last term, and set
u(L) - ay - cS, where S, the particle strength, is the magnitude of the particle
stress up at failure. The result is

K2(-v)  I(1V~m(1 c)  Sac(1-l- C)(l-v2) :

E Em 2 Em

(Here we should interpret Km as the root-mean-square value of the stress-
intensity factor in the ceramic along the crack front.) Then, for the case of
particles that break elastically, we get the modified toughening ratio -'

112

As K/Kmn , an  (36)
e4o(1-c) 2 2+'c

where

E(1-v 2 ) •co = (37) ,
Era(l -v2)

Similarly, the J-integral results (16) and (17) for elastic-ideally plastic
springs can be adapted to apply to ceramics containing ductile particles that

undergo plastic flow before they fail. For the configuration of Fig. 6 the

MO4
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connection between average particle stress up and vave up to failure is now
presumed to be like that shown by the solid curve in Fig. 8. We idealize this
function, replacing it with the elastic-plastic relation given by the dotted
lines, choosing S as the peak particle stress, and picking vp so as to make the
areas under the two curves the same. (Unfortunately, little information is
available concerning actual yp-V av relations, so the idealization is only
conceptual.) Then the elastic-plastic counterpart of (35) is found by multi-
plying its last term by the factor (l+2vp/vy), and the modified toughening
ratio becomes I12

S+K/Km S2ac( l-C) 1+2W- (38)
Nrco(l-c) 2 2vy

KI; m

For a given strength S, the effect of pre-failure ductility is clearly substantial;
however, the lowered particle constraint associated with increasing vp/vy
may be expected to lower S.

Finally, the toughening for the limiting case vp/vy .- may be
calculated by modifying the J-integral result (24) for rigid-plastic springs.
Thus

K2(1-v 2) Ki(1-vM)(1-c) + 2cSvp (39)
E Em

and this gives

r .1/2

A- K/KM = 1+ 2C (40)
Jl-Tc-0 1 -c 14n(l _V2)

Toughening vs. bridge length: matrix crack-growth resistance
With X replaced by the modified toughening ratio A defined above,

and the use of Eqs. (32) and(33) to evaluate k, the results of Fig. 4 for tough-
ening versus bridge length may be applied to particle-reinforced ceramics.
For convenience, the curves of Fig. 4 are rescaled in Fig. 9 to show A versus
(x 2a/8), which now equals

c LpEm (1-c)(1-4 -) coa (41 )



-12-

(The symbols in Fig. 9 represent experimental data to be discussed later.)
Besides the connection these curves give between L/a at fracture and the
toughening ratio, they have another interpretation as resistance curves asso-
ciated with matrix crack growth that is not accompanied by particle fracture.
Suppose a pre-existent crack in the composite is subjected to a gradually in-
creasing far-field K and think of A as the current value of the ordinate of Fig.
9 during this loading process. At A=1 the crack will begin to advance into the
matrix, but particles will remain intact as long as A is below its critical value

for composite fracture. If we now let L denote the amount of bridged
matrix crack growth that occurs before failure, the relation between K and L
is provided by the curves of Fig. 9.

For vp/vy -+ a- , the relation between toughening and bridge length is
produced by changing Eq. (26) to read

A= 1 +2 c" SA (42)N Km

Toughening vs. concentration: bridge length vs. concentration
The toughening ratio K/Km generally starts out as an increasing

function of c, but its rate of increase may drop substantially as c goes up. For
the case of very ductile particles, this is illustrated in Fig. 10a when the ratio
of matrix and particle moduli is Em/Ep=5. Here Eq.(40) has been used to
calculate K/Km versus c, for several values of Z--SLo/Km, where

L0 Kmyv2mj (43)

The parameter co defined by Eq.(37) was calculated as a function of c on the

basis of the self-consistent method (Hill 1965; Budiansky 1965).
Similar results may generally be expected for finite vp/vy. However,

for a sufficiently small value of vp/vy, K/Km may reach a maximum at a
moderate value of c. (For the limiting case of elastic particles, with Em/Ep>l,
Eq.(36) implies a maximum value of K/Km at c < .29)

It follows from Eqs.(40) and (42) that for very ductile particles

• "1 W 9 • P •
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L _ 4 ( ~44)

LO (A+I I--c)

Since, generally, co<(l-c) for En,/Ep>l, the critical bridge length is a decreasing
function of c, as illustrated in Fig. l0b for vp/vy -, o-. Furthermore, it can be
shown that L is a decreasing function of c for all vp/vy.

EXPERIMENTAL INFORMATION

Some available experimental measurements of bridge lengths as well
as toughening in several composite systems will be examined in the light of
the present analysis. Krstic et al. (1981) tested a model system consisting of
glass reinforced by aluminum particles, and Sigl et al. (1987) report results
of studies of A1203/Al and WC/Co. The toughness K and the bridging zone
size L were measured by placing cracks into the composite, imposing
external loads, and observing the stretched metal ligaments between the
surfaces at final fracture. For each composite, the data to be discussed are

for a 20% volume concentration of particles.
Table II lists the measured values of K, L, and the average particle

radius a; bulk elastic constants of matrix (Em, Vm) and particle (Ep, Vp); elastic

constants of the composites (E, v), calculated self-consistently; matrix
toughness Km; and the estimated uniaxial yield strength ao of bulk particle

material. Based on these data, the points plotted in Fig. 9 show the
corresponding values of A and p. The effective values of vp/vy that may be
inferred are vp/vy - 41 for the glass/Al system, -68 for A120 3/Al, and = 12

for WC/Co.
These inferred values of vp/vy may be used in conjunction with the

toughening formula (38) to back-figure effective particle strengths S. For the
particles in glass/Al, we find S - 250 MPa, which gives S/ao- 3.6. But a
much higher strength, S - 1500 MPa, is calculated for the considerably
smaller aluminum particles in the A1203/Al system. This gives S/ao - 22, and

the same surprisingly high ratio is obtained for the small cobalt particles in
WC/Co, for which Eq. (38) gives S - 10 GPa.

For A1203/Al, the rigid-plastic model seems appropriate, and, indeed,

using Eq.(42) to estimate S provides a result only slightly lower than that

Z. Z
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given by the elastic-plastic model. Finally, we remark that the use of this
calculated value of S - 1500 MPa in Eq.(40) to compute the plastic particle
stretch gives vp - .3 pm. Sigl et al. (1987) measured stretches - lAm in

severely necked-down particles before fracture.

CONCLUDING REMARKS

Our theoretical study of particulate toughening displays the effects of
particulate strength, deformation, and size on toughening. In the case of

elastic particles, Eq.(36) shows that for a given particle strength, toughening
is an increasing function of particle size. The same is true for plastically
deforming particles (Eqs.(38,40)) if we assume that both Vp and Vy are
proportional to particle radius. Large plastic deformation of the bridging

particles before fracture can have a substantial toughening effect, and high

particle strength is obviously desirable. But the actual strength and ductility

of a bridging particle are, at this time, difficult parameters to assess, since
they may well be greatly influenced by load and shape asymmetries, as well

as by interface sliding, all of which tend to reduce constraint on the particle,
promote plastic flow, and lower its strength.

Confrontation of experimental data on metal-reinforced ceramics
with the predictions of the present theory seems to imply suspiciously high

particle strengths. If such high strengths are not confirmed, toughening

mechanisms in addition to crack bridging may be operative in particulate-
reinforced ceramics.
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APPENDIX A
Integral-Equation Solutions

A convenient set-up for solving the integral equation (8) is obtained
by differentiation, which gives

gD~s+~JdI )Qdt -(Al)

To satisfy the original integral equation (8), we have to enforce it at just one
point, say a-a, in addition to satisfying (Al) for s in (O,a). Note that (8), (12),
and (Al) imply that

g~)for s-+ O (A 2)

If we now let

g(s)- Hs) (A3)

then (Al) reduces to

2sH '(s) -H(s)+ sJ !!5dt sa (A4)

A neat way to proceed is to write

H(s) . A(scx) + f(s) (A5)

where A- Jcxg(a), and f(O) - f(cx) . 0. Then

lg ]+ 2sf'(s) - f(s) +sJ -=tts (A6)

and with
m W 20-cose) (A 7)

2
the Fourier-series expansion
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f- jasin(nO) (A 8)
R-1

is appopriate. Since

J o tM t a s(0 M

Eq.(A8) becomes

_C(og(}) + 2 0 _<1CoSo)2 I ~oe+ ( -csi:e na.cos nO

-nasin nO +' QI -cosO) ja.cos nO = 2(l-CoO) (A 10)

If we now multiply (AIO) by sin(mO) and integrate over (0,a) we get

CmA - i±DM.0 an - aE (m=1,2,...) (All1)
2 Da

where

In

In 

DM -2xPi (m <n)

- 1 + 2n + 2aP. (rnan)

a 4n(-1)" + 2Pm (m >n)



M - 2 (=m+a odd)

2( 2_ 2 21 (m+n even)
(m2 -nU -1)2 -4n2

and

T (I -cosO) 2 1oJA±c2!! in(m)dO
r 041-cosO)

was evaluated numerically. The substitution of (AM) into the undifferentiat-
ed integral equation (8), and its assertion at the point &-a leads to

PO A+t±P2,18 I (Al 2)

where
II + 2 log

and 0 [+]I +sin-
Pa= 0 Lcostfog 2i sn(nO)dO (n k 1)

2)cosi.

was evaluated numerically.
Equations (All1) and (A 12) constitute N+l linear equations for A and

an (n-l,2,3,...N). The formula (12) for X. works out neatly to

and the independent result (10) that can be used to check this is just

X1-2 2tl112 (A 14)
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An alternative procedure that gave slightly more accurate results for
a given number of simultaneous equations was provided by the use of the
substitution

H(s) - A(s/ci) 2 + f(s) (A15)

in place of (AS). The first term in (A6) then changes to

A !.+(* 2 + !3log(Lsu]

and the system of equations (All) and (A12) for A and an (n-l,2,...N) re-
mains valid, except that Cm and P0 change to

(3.N)H, a w
4 2 8

and
1r 3+41o[,2

0 10
where

Hn4(m 2-3) (m odd)
m(m 2-4)

4m2 (m even)

and

Wuuim(lCOSO)3log ( +Cos.9!sinWm9)d

is evaluated numerically. The formula (A13) changes to

)=L I a (A 16)

2 awl 
- p.
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but (A4) stays the same. For values of a up to 30, solutions based on (A16)
and (AI7) with N-60 were judged to be quite accurate, because they gave
values for X according to the independent formulas (A16) and (A14) that
were in excellent agreement with each other ( 1% discrepancy at a-30, and

less at lower a's). The final results shown for X in Table I were obtained by
extrapolation to N-0o.
Elastic-plastic springs

To solve (19) for g(s) in the range (0,ay), we differentiate, as before,

and again use the substitution (A3) to get

2sH '(s) - H(s) + !H(t)t dt + gy t-  =s (A 17)

Now with

H(s) - A(/ay) 2 + f(s) (A18)

and YIA = -(I-cose) (Al 9)2!
we can retain the Fourier expansion (AS) for f (this time for s in (0, ay). Once

again we get equations (All) and (A12), with revised formulas for Cm and P0

given by

C =inC +2 2(4rm - cY__m - ayU _

where

-V/ msin lu+Sine 2

The expression (21) for vp/vy may be evaluated as
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,G'~ -,ys' 1 a3/2]
vp/vy=-l +- 9 log + J og( -ay /Ot4 +

41 - l, + 1(1 -ay)og diYa- c na

where

% =cos t sin(nO) lo t(YIxs dO

2
and the formula (23) gives

X I A 4,a-/-y -3xjan(A20)

2( n-I
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APPENDIX B

Consistency of Formulas for Toughening Ratio

We want to show that if g(s) satisfies the integral equation (8), then

the formulas (10) and (12) give the same answer for X. It will suffice to

prove that

S2[I- g~s~dSI + 2g2(a) =1I (BI1)

if g(0) - 0, and Eq.(Al) is satisfied. From (Al)

g(s)g'(s) + If VF/IL~S "(t) dt = s) (B2)

and integration gives

-g (c)+-i.I J 6sgdtds J = (B3)
2 2Jo~o t-s 20-r

To show that (B3) implies (B I), we just have to verify that

rjJ~g 2 r Lf /T (s)(t) dtds (B4)

But if the integrals exist this is an identity, because

L0L COO) \l~~~ dsdt a=0t s)d

f4/ t'.I , Vr--fV
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APJPENDIX C

Elastic Springs, a-+

If we let k- x(a-s)12 in Eq.(A1), and then let a -- cc, we get

g'(0,- If (TOdill = 0 (> 0) (C1)

which has to be solved subject to the condition

1 for ACoo (C2)

that is consistent with the far-field stresses (1). Let f(t) denote the right
hand side of (Cl) for 4 < 0, and say g(t) = 0 for 4 < 0. Then the Fourier trans-
forms

g (O) z L g(k)e' 4 dt (a)) ra J f(t)e'O 'dt

satisfy

O (l+1 MI)g+ = i[i + g(O)] (C3)

Here the + and - superscripts denote analyticity in the upper and lower half
o-planes, respectively. Now split (1+101) into the quotient Q+/Q" by writing

(Q+)" (Q-)" 0/lOi

Q+ Q- 1+ I(0

from which we find
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(Q4  1X/IxI dx- (l+ _)(x-o))

= 1 i1oo (Im(co)lg) M2(1+0)) (I(2
A)

Integration gives

Q= (const)4 -+(o exp 1+lo z- d

Since col splits into (lo)+/('o)-, Eq.(C3) implies that

(V'j) + Q+ g+ = i[f + g(O)] (Nf')-Q-

is an entire function of w, and the right choice will turn out to be a constant.

Thus
(6)) ex[pI log z] (C4)

the only singularity of which is a branch point at the origin. Evaluating the
inversion integral

g(t) g(co) exp(-ico4) dco

via integration around the branch cut from 0 to -ioo gives

0exp t4jLt log ~r dr
A¢.t/f - t f-o I + r2

g(t) = C-(1 + t2) 3/ 4  dt (C5)

For large this can be evaluated asymptotically via Watson's lemma, and
matching the behavior for 4-..*o to that given by Eq.(C2) gives X
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1V32 11-og4

( 144z] a r'[zJ/r[z])

with C- (1+i)12. To get an expansion of g(4) for 4 small, use (C4) to write the
Laplace transform

i(s) aJ0e"I g(4) d4 = j(is) (s>O)

as

1/2 2 1/4 1 lg pdp

Expanding this for large s gives

g(t) - 71- ;72 [1-r-log E] +

y-r(1) - .57722..

Finally, with Ce-Ri/4 - 1/Vt 2, Eq.(C5) was used to evaluate g(4) for intermedi-
ate values of 4 via numerical integration.
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Fig. 1.Bridged crack.
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Fig. 3. J-integral path.
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Fig. 4. Bridging-spring model: toughening vs. bridge length
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